5,977 research outputs found

    Some applications of semi-discrete variational integrators to classical field theories

    Get PDF
    We develop a semi-discrete version of discrete variational mechanics with applications to numerical integration of classical field theories. The geometric preservation properties are studied.Comment: 14 page

    Estimating packet loss rate in the access through application-level measurements

    Get PDF
    End user monitoring of quality of experience is one of the necessary steps to achieve an effective and winning control over network neutrality. The involvement of the end user, however, requires the development of light and user-friendly tools that can be easily run at the application level with limited effort and network resources usage. In this paper, we propose a simple model to estimate packet loss rate perceived by a connection, by round trip time and TCP goodput samples collected at the application level. The model is derived from the well-known Mathis equation, which predicts the bandwidth of a steady-state TCP connection under random losses and delayed ACKs and it is evaluated in a testbed environment under a wide range of different conditions. Experiments are also run on real access networks. We plan to use the model to analyze the results collected by the "network neutrality bot" (Neubot), a research tool that performs application-level network-performance measurements. However, the methodology is easily portable and can be interesting for basically any user application that performs large downloads or uploads and requires to estimate access network quality and its variation

    On the Effects of Sender-Receiver Concealment Mismatch on Multimedia Communication Optimization

    Get PDF
    A large number of performance optimization algorithms for multimedia communications, including rate-distortion optimized schemes, rely on knowing the decoder behavior in case of data loss, i.e., the decoder-side error concealment technique. However, for the specific case of video coding, standards do not specify it, thus different decoders may - and typically do - use different concealment techniques. This work investigates the impact of assuming, in the transmission optimization phase, a concealment algorithm different from the one that is actually used by the decoder, in order to determine which are the best assumptions to use at the transmitter. Firstly, we investigate the typical performance provided by ten concealment techniques belonging to three widely used algorithmic families (spatial, temporal and mixed). Then, we assess the impact that an incorrect concealment assumption causes, in terms of both packet transmission policy changes and video quality degradation, using a simple rate-distortion transmission optimization technique that targets a generic two QoS-level network. Simulation results over several standard video sequences show that the performance impact of incorrectly assuming the decoder-side concealment technique may be significant but it is limited if the two techniques belong to the same algorithmic family. Moreover, the impact on performance caused by incorrect assumptions is strongly mitigated if the decoder employs a high-performance concealment algorithm. Finally, the impact on the performance of several parameters such as the encoding pattern, the packet loss statistics (uniform and burst losses) and the amount of high-priority traffic is evaluated, showing that the conclusions can be confidently applied to actual multimedia communication scenarios
    corecore